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Electromagnetic induction in a generalized 3D anisotropic earth,
Part 2: The LIN preconditioner

Chester J. Weiss∗ and Gregory A. Newman∗

ABSTRACT

A practical limitation in the use of generalized 3D
forward modeling algorithms for inversion of electro-
magnetic data is the high computational cost of solving
large, ill-conditioned systems of linear equations aris-
ing from the discretization of the governing Maxwell
equations. To address this problem, a new class of pre-
conditioners has recently been proposed which is based
on a Helmholtz decomposition of the electric field in the
low induction number (LIN) regime. This paper further
develops that idea and introduces a LIN preconditioner
which can be applied to problems characterized by a
fully generalized anisotropic medium. Included are sam-
ple calculations demonstrating a reduction by two orders
of magnitude in the number of “quasi-minimal residual”
iterates and a speedup by a factor of approximately four
in the solution time for one forward calculation. Also in-
cluded are results previously unobtainable by standard
Jacobi preconditioning for simulating multicomponent
induction sonde response in a horizontal well within a
crossbedded formation.

INTRODUCTION

The presence of electrically anisotropic earth materials can
have a profound effect on the interpretation of electromag-
netic (EM) data. Examples where this is the case are spread
throughout the range of geologic sciences from studies on the
evolution of oceanic crust (Everett and Constable, 1999) to the
analysis of induction log data (Klein, 1993) to aquifer mapping
(Christensen, 2000). Recent advances in modeling low-
frequency EM induction in a fully generalized 3D anisotropic
medium (Davydycheva and Druskin, 1999; Weidelt, 1999;
Wang and Fang, 2001; Weiss and Newman, 2002) have been
motivated largely by the desire to minimize uncertainty in
the interpretation of EM data where anisotropy effects are
believed to be significant. Some progress can be made towards
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improved interpretations of EM data through the accumula-
tion of response curves for a given EM instrument and a suite
of geologic scenarios. Additional progress may be realized
through the application of geophysical inversion techniques.
Regardless, building a comprehensive catalog of response
curves and the efficient execution of an inversion algorithm
both rely on speedy forward calculations. We present here a
method for significantly reducing the calculation time of 3D
finite-difference (FD) simulations which prove useful in either
of these endeavors. Furthermore, we also present a sample
calculation of the multicomponent induction coil response
within a horizontal well embedded in an anisotropic medium.
Studies by Yu et al. (2001) demonstrate that multicompo-
nent induction coils can recover the formation anisotropy
parameters of thinly bedded turbidite sequences. The example
presented here considers the more complicated case of the
crossbedded sandstone unit which draws analogy from the
well-known hydrocarbon reservoirs of eolian origin such as
the Permian-Pennsylvanian Casper sandstone in southeastern
Wyoming (Steidmann, 1974), the Jurassic Norphlet sandstone
in southern Mississippi and Alabama (Berg, 1986), and the
Permian Rotliegendes sandstone in the North Sea Basin
(Glennie, 1972).

To address the problem of slow convergence in the itera-
tive solution to finite difference equations at frequencies less
than 1 MHz, Newman and Alumbaugh (2002) introduced a
“low induction number” (LIN) preconditioner based on the
Helmholtz decomposition of the electric fields in the static
limit. When compared to simple Jacobi scaling, the LIN precon-
ditioner resulted in a speedup in the solution time by a factor of
10 for a dipping borehole problem in a transversely anisotropic
medium. Their work on preconditioning closely parallels that
of of Druskin et al. (1999), who used the same decomposi-
tion, coupled with the inverse of the discretized curl-curl op-
erator, to construct various Krylov subspaces which resulted
in a factor of 100 speedup of the spectral Lanczos decomposi-
tion method (Druskin and Knizhnerman, 1988). This improve-
ment to the spectral method does not restrict its ability to re-
move spurious modes or its property whereby solutions for
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multiple frequencies can be obtained for a cost that is only
slightly greater than that for a single frequency.

While other preconditioners (e.g., polynomial, block Jacobi,
and Choleski) have been investigated within the confines of
the geophysical EM induction problem (c.f., Mackie et al., 1994;
Newman and Alumbaugh, 1996), the reduction in solution time
they provide is much less than the factor of 10–100 realized
by the Helmholtz decomposition techniques. Improvements in
the covergence rate of the bi-conjugate gradient method are
reported by Smith (1996) when a static divergence correction
is applied intermittantly during iterative sequence, resulting in
a factor of 2–4 in speedup of the solution time.

This paper extends the treatment of the LIN preconditioner
to an anisotropic medium characterized by a dense 3× 3 con-
ductivity tensor ¯̄σ . Particular attention is paid to a finite dif-
ference discretization of the ∇ · ¯̄σ∇φ term which appears in
the LIN preconditioner and also in the auxillary problem of
dc resistivity simulations. We begin with an introduction to
the governing partial differential equation (PDE) for low-
frequency electromagnetic induction in an anisotropic con-
ducting medium. Brief discussions follow on discretizing the
PDE using the staggered FD method and preconditioning the
resulting system of linear equations in the context of iterative
Krylov method solvers. Next, the FD equations of the LIN
preconditioner are derived for a generalized 3D anisotropic
medium. Examples are then presented comparing the perfor-
mance of the LIN preconditioner to Jacobi preconditioning.
Last, the response of a crossbedded sandstone unit containing
a horizontal well is evaluated, and the 3D effects due to the for-
mation anisotropy are quantified. Comments on these results
are contained in the Discussion section; the salient points of
the paper and their implications are summarized in the Con-
clusions section. For convenience, a full derivation of the LIN
preconditioner is included in the Appendix.

THEORY

The governing equation for the distribution of electric field E
throughout an anisotropic medium is derived from Maxwell’s
equations as

∇ × ∇ × E+ iωµ ¯̄σE = −iωµJ, (1)

where an exp(iωt) time dependence is implicit. In the case
of a total field formulation, the vector field J represents the
source currents responsible for the generation of eddy currents
throughout a medium characterized by a symmetric 3× 3 elec-
trical conductivity tensor ¯̄σ and constant magnetic permeability
µ. For a scattered field formulation, J is defined as ( ¯̄σ − σ0)Eb,
where Eb are the known electric fields generated by a refer-
ence conductivity model σ0 which is often simpler than ¯̄σ , and
thereby offers the solution Eb with comparatively little effort.
In this latter case, the total electric field is given by sum E+Eb.

Discretization of equation (1) by a staggered FD grid (Yee,
1966) with symmetric scaling (Newman and Alumbaugh, 1995;
Weiss and Newman, 2002) yields a large-scale ill-conditioned
system of linear equations,

Ax = b (2)

where A is a complex symmetric matrix, x is the vector of elec-
tric field components, and b is the vector of source compo-
nents. A computationally efficient algorithm for solving sys-
tems of this type is the quasi-minimal residual (QMR) method

(Freund and Nachtigal, 1994), which belongs to the class of iter-
ative Krylov subspace methods that includes conjugate gradi-
ent (CG) methods. As is the case with all Krylov methods, the
rate at which the approximate solutions xi converge toward
the actual solution is dependent upon the condition number
‖A−1‖p‖A‖p, where ‖·‖p denotes some p-norm. Matrices with
small condition numbers tend to converge rapidly, whereas
those with large ones (as is the case here) converge slowly,
if at all.

One way to improve the slow convergence rate for the system
in equation (2) is to transform it by a symmetric matrix, C into
an equivalent system,

(AC−1)(Cx) = b, (3)

where the condition number of AC−1 is, hopefully, smaller than
that of A. A useful feature of the QMR algorithm is that we
can solve the transformed system [equation (3)] while avoid-
ing computing the computationally expensive matrix-matrix
product AC−1. Instead, the effect of the transformation in
equation (3) is realized by computing the action of the precon-
ditioner C−1 at each step i of the iterative sequence on the i th
Lanczos vector vi [see algorithm 8.1 in Freund and Nachtigal
(1994)]. Thus, at each step of the QMR sequence (where the
Krylov subspace is spanned by the Lanczos vectors v0 . . . vi ),
we solve the system

Cwi = vi . (4)

Since we seek a preconditioning operator with the property
that C−1A approximates the identity matrix, we note that the
preconditioning step, equation (4), is equivalent to obtaining
an approximate solution to equation (2) when the source vector
b is replaced by the vector vi .

One approach to such an approximate solution is the “oper-
ator splitting” strategy (Trefethen and Bau 1996) for precondi-
tioning. Briefly stated, if an operator A can be decomposed in
terms of the sum A1+A2+ · · ·, then sometimes a component
Ai or some subset of components can be used as an effective
preconditioner. With respect to the EM induction problem at
hand, we can impose a Helmholtz decomposition on the elec-
tric field (E=F+∇ f ) and precondition with a vector Lapla-
cian operator L (because∇·F≡ 0) plus a divergence correction
term qi (Smith, 1996):

C−1vi = L−1vi + qi . (5)

This is precisely the LIN preconditioner (see Appendix),
first described in Newman and Alumbaugh (2002), whereby
the discrete Laplacian operator is symmetric and generated
by centered finite differences. However, when generalized
anisotropic media are present, as is the case here, the con-
struction of the divergence correction term qi warrants fur-
ther investigation since this involves a discretization P of the
∇ · ¯̄σ∇ operator—a task complicated by the presence of the
anisotropic conductivity tensor ¯̄σ . A derivation of the LIN
preconditioner (and thus the role of the ∇ · ¯̄σ∇ operator) is
contained in the Appendix.

Regarding the construction of a FD operator P, we observe
that for a given scalar potential f , the following relation holds
in the continuous case:

∇ · ¯̄σ∇ f =
x,y,z∑
α,β

∂

∂α

[
σαβ

∂ f

∂β

]
, (6)
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where σαβ are the individual terms in the symmetric 3× 3
conductivity tensor ¯̄σ . An FD approximation to the individ-
ual terms of this summation follows from Weiss and Newman
(2002) whereby an expectation value 〈·〉 is defined over some
region Ä: 〈

∂

∂α

[
σαβ

∂ f

∂β

]〉
= 1
Ä

∫
Ä

∂

∂α

[
σαβ

∂ f

∂β

]
dÄ. (7)

Considering that the staggered FD grid defines electric field
components along edges of the mesh and the fact that the LIN
preconditioner relates the gradient of the scalar function f to
the electric field, we define f at the nodes of the FD mesh
(Figure 1). Thus, the region Ä is taken as xi−1/2 < x< xi+1/2,
yj−1/2 < y< yj+1/2, and zk−1/2 < z< zk+1/2. Evaluation of the in-
tegral for the case where α=β is relatively straightforward
using centered differences. For example, the α = β = x term
is given by〈
∂

∂x

[
σxx

∂ f

∂x

]〉
= 1

y
j−1/21

z
k−1/2

Ä

×
[

fi+1, j,k− fi, j,k
1x

i

σxx(xi+1/2, yj , zk)

− fi, j,k− fi−1, j,k

1x
i−1

σxx(xi−1/2, yj , zk)

]
, (8)

where the node spacing1ξ
η for coordinate ξ is given by ξη+1− ξη.

The conductivity valueσxx is taken to be a volume-weighted av-
erage of the σxx conductivities in the four FD cells surrounding
the point (xi+1/2, yj , zk). For the remaining cases where α 6= β,
we take the volume element dÄ= dα dβ dγ and first write〈
∂

∂α

[
σαβ

∂ f

∂β

]〉
= 1
Ä

∫ γ2

γ1

∫ β2

β1

[
σαβ

∂ f

∂β

∣∣∣∣
α2

−σαβ ∂ f

∂β

∣∣∣∣
α1

]
dβ dγ.

(9)
Evaluation of the σαβ∂β f terms follows next with the use of
a four-point stencil, and the remaining integration over γ is
approximated by scaling with the quantity 1γ = γ2 − γ1. For

FIG. 1. Coordinate system used for FD discretization of equa-
tion (1) and the LIN preconditioner. Electric field components
are sampled on the edges of the FD mesh whose nodes are rep-
resented by the open circles. Also sampled at the edges of the
FD mesh are components FD solution of the vector Laplacian
equation ∇2F= − iωµJ. In the calculation of the divergence
correction term of the LIN preconditioner, values of the po-
tential f are sampled at the FD nodes.

example, in the case where α= x and β = y, the right side of
equation (9) becomes

1z
k−1/2

Ä

[
fi, j+1,k + fi+1, j+1,k − fi, j,k − fi+1, j,k

2/σxy(xi+1/2, yj+1/2, zk)

+ fi, j,k + fi+1, j,k − fi, j−1,k − fi+1, j−1,k

2/σxy(xi+1/2, yj−1/2, zk)

− fi−1, j+1,k + fi, j+1,k − fi−1, j,k − fi, j,k
2 /σxy(xi−1/2, yj+1/2, zk)

− fi−1, j,k + fi, j,k − fi−1, j−1,k − fi, j−1,k

2 /σxy(xi−1/2, yj−1/2, zk)

]
. (10)

Note that conductivity values in the expression above are re-
quired at the center of a FD cell face and are thus given by
two-cell volume-weighted averages. Furthermore, when all the
terms in equation (6) are evaluated in a similar fashion, the re-
sulting 19-point stencil results in a symmetric FD coefficient
matrix, provided that each of the individual equations in the
system are scaled by the volume term Ä. This symmetrization
step is analogous to those already documented in Newman and
Alumbaugh (1995) and Weiss and Newman (2002).

Since the FD coefficient matrices L and P are real-valued and
symmetric, solutions for F and f are obtained by standard CG
algorithms with an incomplete Cholesky factorization (ICF)
used as preconditioner. Numerical instabilities in the factor-
ization of P for some problems motivate the use of a “shifted”
Cholesky decomposition (Manteuffel, 1980) whereby the ICF
of P is replaced by the ICF of P+χI and χ is taken heuristi-
cally as 0.001 times the maximum value on the diagonal of P.
Through numerical experimentation with the problems exam-
ined here, a stable ICF can arise with factors much greater than
0.001. However, it generally serves as poor preconditioner.

We close this section by noting that the divergence correction
term in equation (5) renders the preconditioner C−1 nonsym-
metric. However, we note that since the divergence correction
term is small, the preconditioner is “mostly” symmetric and,
in practice, leads to a convergent QMR iterative sequence. For
convenience, we can quantify the symmetry of the LIN pre-
conditioner through a dimensionless symmetry quotient Si ,

Si = ‖b
T C−1Axi ‖

‖(Axi )T C−1b‖ , (11)

where ‖·‖ denotes the L2 norm. Clearly, in the case where C−1

is symmetric, the quantity Si is equal to unity. Furthermore, at
minimal added computational cost, the effectiveness of the LIN
preconditioner can be evaluated via a dimensionless quality
factor Qi ,

Qi = ‖C
−1Axi ‖
‖xi ‖ , (12)

which is equal to unity in the end member case where C−1A
equals the identity matrix.

EXAMPLES

While the 3D FD solution to the anisotropy problem can ac-
commodate a fully generalized anisotropy tensor (Weiss and
Newman, 2002), a subclass of problems which is relevant to ex-
ploration geophysics is characterized by a conductivity tensor,
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which, in the principal axes reference frame, consists of two
components that are equal (σx′x′ = σy′y′ = σ||) and a third com-
ponent (σz′z′ = σ⊥ <σ||) whose value is smaller than the other
two. This is the case in which σ|| represents the conductivity in
a plane (such as a sedimentary bedding plane), and the third,
smaller component is the conductivity in the direction perpen-
dicular to that plane. Orientation of the principal axes and,
hence, the bedding plane with respect to the reference frame
used for the model calculations is described by two Euler an-
gles (Figure 2) corresponding to the “strike” and “dip” of the
anisotropy. Thus, the previously developed 3D FD solution
may find application in the modeling EM induction in, for ex-
ample, a crossbedded sandstone unit.

The first example problem is shown in Figure 3a and consists
of the double half-space model excited by a vertical magnetic
dipole source embedded in the anisotropic region where the
anisotropy dip angle θ is 60◦ [taken from Figure 6 in Anderson
et al. (1998)]. Weiss and Newman (2002) report favorable
agreement between the FD and analytic solutions to this

FIG. 2. Relationship between the x-y-z reference frame S and
the x′-y′-z′ principal axes reference frame S′ where the electri-
cal conductivity tensor is given by ¯̄σ ′ = diag(σ|| , σ|| , σ⊥). Angles
θ and φ represent the “dip” and “strike” of the x′-y′ plane with
respect to S.

FIG. 3. Two models consisting of a single transmitter (symbol) embedded in an anisotropic medium (dip indicated
by slanting lines). Transmitter frequencies for (a) and (b) are 20 kHz and 1 kHz, respectively. A comparison of
FD results of model (a) with analytic solutions was previously reported in Weiss and Newman (2002).

model. For the present calculations, we discretized the region
into 60× 60× 60 FD cells over the region −2 m< x, y, z< 2 m
with a node spacing 0.1 m for |x|, |y|, |z|> 1 m and 0.05 m for
|x|, |y|, |z|< 1 m. Operating at an induction logging frequency
of 20 kHz, the transmitter is embedded within the anisotropic
region, 0.5 m below the half-space contact, and oriented such
that its magnetic dipole moment is normal to the contact. Mul-
tiple solutions to this problem were generated by precondi-
tioning with both a standard Jacobi preconditioner and the
LIN preconditioner with varying tolerances of the accuracy of
the ICF-CG solution. Plots of the quality factor Qi , symmetry
quotient Si , and residual norm ‖b−Axi ‖ as a function of QMR
iterate are shown in Figures 4 and 5. Computation times and
QMR iterate counts are presented in Table 1.

FIG. 4. Calculation of the quality factor (top), symmetry quo-
tient (middle), and residual norm (bottom) for model (a) in
Figure 3 using a Jacobi preconditioner.
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The second example problem is shown in Figure 3b. It is
composed of a 1-kHz horizontal magnetic dipole transmit-
ter sandwiched between two layers with identical anisotropy
dip, but different conductivity values in the principal axes ref-
erence frame. At a distance of 0.3 m below the transmitter
and, hence, the interface between the two regions with dif-
ferent conductivity values, the orientation of the anisotropy
dip changes from 33◦ to 115◦, thus forming the bottommost

FIG. 5. Calculation of the quality factor (top), symmetry quo-
tient (middle), and residual norm (bottom) for model (a) in
Figure 3 using a LIN preconditioner. Results are shown for six
different values of ICF-CG residual norm ε in the LIN precon-
ditioner step. The dashed line in the middle figure is the ideal
case of Si = 1 for a perfectly symmetric preconditioner.

Table 1. Summary of models evaluated and corresponding QMR performance attributes on a 1.5-GHz Athlon workstation.
Number of nodes in the x, y, and z directions are denoted by Nxx , Nyy, and Nzz, respectively. The number of degrees of freedom in
the resulting FD system of linear equations is denoted by NDF. Solution accuracy in the LIN precondition steps is denoted by εε,
which represents the final reduction in the residual by incomplete Cholesky factorization.

Model Nx × Ny × Nz N DF C−1 Time [s] Iterates ‖b − Axi ‖/‖b‖

Figure 3(a) 61 × 61 × 61 626580 Jacobi 2962 3726 4 × 10−7

LIN ε = 2 × 10−3 3099 111
LIN ε = 2 × 10−4 607 19
LIN ε = 2 × 10−5 685 19
LIN ε = 2 × 10−6 810 20
LIN ε = 2 × 10−7 949 21
LIN ε = 2 × 10−8 1058 21

Figure 3(b) 21 × 21 × 21 21660 Jacobi 67 2631 1 × 10−8

LIN ε = 10−3 14.5 23
LIN ε = 10−4 13.5 20
LIN ε = 10−5 15.3 21
LIN ε = 10−6 15.4 20
LIN ε = 10−7 16.5 20
LIN ε = 10−8 17.8 20

interface in this three layer model. The region is discretized
a uniform 21× 21× 21 mesh on 1 m< x, y, z< 1 m. As with
the previous model (Figure 3a), multiple solutions were com-
puted using both the Jacobi preconditioner and LIN precon-
ditioner with variable ICF-CG solution accuracy (Figures 6, 7;
Table 1).

The final example problem we present (Figure 8) illustrates
the variations in magnetic fields arising from a multicompo-
nent induction log transmitter in a horizontal well. Electrical
conductivity values σ|| and σ⊥ are taken as spatially invariant.
However, we introduce variations in the dip of the principal

FIG. 6. Calculation of the quality factor (top), symmetry quo-
tient (middle), and residual norm (bottom) for model (b) in
Figure 3 using a Jacobi preconditioner.
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axes reference frame to simulate the electrical structure of
a crossbedded sandstone unit. The FD mesh is composed of
48× 48 cells in the x-z plane and 41 cells in the y direction.
Mesh spacing is a uniform 0.15 m in the y direction over
−3 m< y< 3 m. Mesh spacing is also 0.15 m in the x and z
directions for |x|, |z|> 0.15 m, but is reduced to 0.018 75 m for
|x|, |z|< 0.075 m in order to better approximate a circular cross-
section for a 0.15-m diameter borehole/invasion zone oriented
along the y-axis. Along the y axis are a 20-kHz magnetic dipole
transmitter at y=−1 m and a series of 21 receivers evenly dis-
tributed on 0 m< y< 1 m. Magnetic field components from
each of the x, y, and z polarizations of the transmitter are com-
puted along with, for comparison, the fully coupled magnetic
fields arising when the anisotropy dip variations in Figure 8 are
set uniformly to 0◦ (Figure 9).

DISCUSSION

Clearly, the results in Table 1 demonstrate a significant reduc-
tion in the amount of CPU time required to solve the fully 3D
EM induction problem when the LIN preconditioner is used in-
stead of simple Jacobi scaling. Furthermore they illustrate that
the solution of the vector Laplacian and scalar Poisson equa-
tions needn’t be very accurate in order to generate an effective
LIN preconditioner. Indeed, as these two systems are solved
more accurately, the time required for construction of the LIN

FIG. 7. Calculation of the quality factor (top), symmetry quo-
tient (middle), and residual norm (bottom) for model (b) in
Figure 3 using a LIN preconditioner. Results are shown for
six different values of residual norm ε in the LIN precondi-
tioner step (solution of both the vector Laplacian and Poisson
equations).

preconditioner at each QMR iterate naturally increases but the
number of QMR iterates remains essentially the same. Thus,
effective use of the LIN preconditioner relies, in part, on choos-
ing a ICF-CG solution tolerance that is sufficiently small, but
not too small. In our experience, values on the order of 10−4

offer the best tradeoff for LIN accuracy versus time spent com-
puting QMR iterates.

As noted earlier in the text, the divergence correction term qi

[equation (5)] results in a LIN preconditioning operator that
is nonsymmetric. However, the preconditioner is symmetric
enough that the QMR iterative sequence still converges to a
solution. While values of the symmetry quotient Si for LIN
preconditioning should be independent of the vectors Axi and
b, uncertainty in the solution to the vector Laplacian equation
(see Appendix) and the divergence correction term can lead to

FIG. 8. (Top) Diagram (not to scale) of a y-directed horizon-
tal well in a crossbedded sandstone whose EM response due
to a multicomponent magnetic dipole transmitter (Tx) is com-
puted at the receiver (Rx) locations along the borehole axis.
(Bottom) Crosssection of the discretized crossbedded sand-
stone model with horizontal borehole. Shown here is the FD
mesh in the x-z plane and the spatial variation in dip (here,
y-invariant) of the principal axes reference frame. Formation
conductivities are taken as σ|| = 0.534 S/m and σ⊥ = 0.152 S/m
with a 0.15-m diameter y-directed borehole/invasion zone of
σh= σv = 0.285 S/m.
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variations of Si seen in Figures 5 and 7. It is worth noting, how-
ever, that they are generally close to unity for the two models
presented and illustrate a minimum upper bound of Si ≈ 6 for
QMR convergence. For comparison, variations in the Jacobi
preconditioning (Figures 4 and 6) yields values Si = 1 within
machine tolerance. Admittedly, values of Si which deviate from
unity are difficult to interpret since theoretical bounds are not
obvious from equation (11).

When compared to Jacobi scaling, the LIN preconditioner
reduces the number of QMR iterates by more than two orders
of magnitude for the models shown in Figure 3. This can be ex-
plained, in part, by examination of the quality factor Qi (really,
a lower-bound estimate of the xi -subordinate matrix 2-norm)
for each of the preconditioning methods (Figures 4–7). In other
words, Qi is a measure of the magnification of the vectors xi by
the operator AC−1. Ideal values are of order one. Small values
of Qi indicate that the approximate solutions xi at each QMR
iterate i reside very close to the null space of C−1A, as appears
to be the case with Jacobi preconditioning. This is in contrast to
the case of LIN preconditioning where ||C−1A|| ≥ 50 for each
of the two models examined.

One could interpret the convergence effect of the vectors
qi within the context of inexact preconditioning (Golub and
Ye, 1999). The idea of inexact preconditioning is such that the
action of the preconditioner C−1 is computed to some accu-
racy ε which, in general, is much less than the accuracy sought
for the solution to the original set of linear equations. Thus, at
each preconditioning step of the iterative sequence one would
have C−1vi + ei , where ei is the error vector which can be

FIG. 9. (a)–(c) Plotted as a function of transmitter-receiver offset along the y-directed borehole axis shown
in Figure 8, Hi j represents the j th quadrature component of magnetic field due to a unit-magnitude,
multi-component 20-kHz transmitter with magnetic dipole moment oriented in the i th direction. Components
labeled H ∗i i represent the fully coupled quadrature component of magnetic field when dip variations shown
in Figure 8 are set uniformly to 0◦. (d)–(f) Corresponding plots of the polar angle θH = cos−1(Hiz/|Hi |) and
azimuthal angleφH = cos−1(Hix/|Hi | sin θH ) of magnetic field orientation along the borehole axis for an i -directed
transmitter (Tx) moment in the presence of the crossbedded anisotropy shown in Figure 8.

large ε is also large. This is similar in form, at least, to the
expression given by equation (4). As an alternative to the two-
term coupled recursion QMR algorithm used here (Freund and
Nachtegal, 1994), a “flexible” QMR algorithm has been pro-
posed by Szyld and Vogel (2001) which directly accounts for
the vectors ei (or in our case, qi ) at each iteration.

Lastly, an important application of the LIN preconditioner is
shown by the results of Figure 9 for the multicomponent induc-
tion sonde in a horizontal well (Figure 8). Regarding solution
of the linear system, one which was particularly ill-conditioned,
the factor of 10−7 reduction in the residual norm (used in the
previous examples) was unobtainable by Jacobi precondition-
ing after 5000 QMR iterations for each of the three transmitter
polarizations. In contrast, the LIN preconditioner was able to
generate a solution after approximately 20 iterations. The re-
sults (Figure 9) illustrate the fact that in an anisotropic medium
where the conductivities in the “bed parallel” and “bed per-
pendicular” directions are spatially uniform, variations in the
orientation of the bedding plane can generate nonzero sec-
ondary magnetic fields on the borehole axis in a null-coupled
transmitter-receiver configuration. This, in itself, is nothing new
and is presently in use by the induction logging industry to de-
termine the relative orientation of bedding planes to the bore-
hole axis (Beard et al., 1998; Gupta et al., 1999). However,
these results demonstrate that a local 1D interpretation of the
null-coupled response can be misleading, even in this relatively
simple model where the fully 3D nature of the formation is
clearly evident by the separation in the Hyy and H ∗yy curves in
Figure 9b.
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CONCLUSIONS

A novel (LIN) preconditioner is presented for linear sys-
tems of equations arising from FD modeling of EM induction
in a fully generalized 3D anisotropic medium. This work builds
upon previous efforts in FD modeling of EM induction in an
anisotropic medium (Weiss and Newman, 2002) and novel pre-
conditioning strategies (Newman and Alumbaugh, 2002). Sim-
ilar to the results found by Newman and Alumbaugh (2002) for
transversely anisotropic media, we find that the LIN precondi-
tioner can reduce the number of QMR iterations by two orders
of magnitude and reduce the total QMR iterative sequence
time by a factor of four when compared to Jacobi scaling. Fur-
thermore, we note that the FD template developed here for the
construction of the divergence correction term can be applied
directly to the problem of dc resistivity sounding in a gener-
alized 3D anisotropic medium. Also presented are results for
a multicomponent EM induction sonde in a horizontal well,
which were made possible through LIN preconditioning and
underscore the challenges faced by the log analyst when con-
fronted with an anisotropic formation. Combined, these results
show that effective preconditioning can lead to previously un-
obtainable results and significantly reduce the solution times
for 3D simulations, thus reducing the computational burden of
3D finite difference methods for electromagnetic imaging of
geologic formations.
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APPENDIX

THE LIN PRECONDITIONER

Several authors have remarked on the difficulty in solving
equation (1) as the frequencyω approaches the static limit (c.f.,
Druskin et al., 1999; LaBreque, 1999). One strategy for accom-
modating this difficulty begins with the Helmholtz theorem and
the decomposition of electric field as the sum of divergence-
free F and curl-free ∇ f parts:

E = F+∇ f. (A-1)

Substituting equation (A-1) into equation (1) yields an
equation in which the curl-curl operator of equation (1) is re-
placed by a vector Laplacian operator, as

−∇2F+ iωµ ¯̄σ (F+∇ f ) = −iωµJ. (A-2)

As pointed out in Newman and Alumbaugh (2002), the ad-
vantage of the Helmholtz decomposition is to deflate the null
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space of the curl-curl operator, which is responsible for poor
convergence rates when equation (2) is solved at low frequen-
cies by iterative Krylov subspace methods. They note that the
curl-curl operator is also responsible for the introduction of
“spurious modes”, whereby the electric field E can be aug-
mented by the gradient of a scalar and still satisfy the discrete
version of equation (1) [see Labreque (1999) for additional
information on spurious modes].

Newman and Alumbaugh (2002) observed that when
equation (A-2) is discretized on a FD grid of characteristic
node spacing 1, the elements of the discretized Laplacian op-
erator are given approximately by 1/12. Thus, when the fre-
quency ω is sufficiently small, the condition 1/12Àωµσ is
satisfied and a dimensionless “induction number”

√
12ωµσ

is much less than unity. Under these low induction number
(LIN) conditions, the vector discrete Laplacian operator is
likely to perform well as a preconditioner for the FD system of
equations (2).

However, solution to the system ∇2F= iωµJ yields a vector
field which does not satisfy the continuity equation for elec-
tric currents. Thus, an equation for the scalar potential f in
equation (A-1) can be derived from the application of the di-
vergence operator to equation (2):

∇ · ¯̄σ∇ f = −∇ · ¯̄σF−∇ · J. (A-3)

Addition of the gradient of f to the vector field F completes the
construction of a low-frequency approximation to the fields de-
scribed by equation (2). Derivation of a FD operator P which
approximates the continuous operator on the left side of the
Poisson equation (A-3) is described in the main body of this
paper. As noted earlier in equation (6), calculation of the diver-
gence correction term is done by first solving equation (A-3)
via finite differences, and then estimating the gradient of f by
centered finite differences.


